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M O D E L  P E R F O R M A N C E
• When a drift occurs, the performance of a model will be affected over time

• If a drift occurs, we’d like to notice & take action

• If no drift is detected, everything is fine…

• right?
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L O C A L  D R I F T S  M A Y  G O  
U N N O T I C E D !

• A small enough subgroup of 

points may drift and not have a 

significant effect on the overall 

performance!

• If the drift goes undetected, the 

subgroup will be affected 

disproportionatly and nobody will 

even know
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C R E A T I N G  A  L O C A L I Z E D  D R I F T  
B E N C H M A R K  

• We set out to create a controlled benchmark, with localized drifts injected into it.

• Based on this dataset, we’d like to quantify the extent to which existing drift detectors 

can find localized drifts. 
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A G R A W A L  D A T A S E T

• We base the benchmark on the Agrawal stream generator [1] , a commonly adopted 

synthetic stream

• Each generated sample is a point (person) characterized by various features:

• E.g. Age, Salary, Education level

• Concept Drift is injected by using different classification functions to generate target 

labels

[1] Rakesh Agrawal, Tomasz Imielinksi, and Arun Swami. “Database Mining: A Performance Perspective”, IEEE Transactions on Knowledge and Data Engineering, 5(6), De cember 1993.
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D R I F T I N G  S U B G R O U P ( S )

• We want to target one specific subpopulation

• E.g., “purple circles”

• This simulates a subgroup that starts acting differently

• Desiderata for Subgroup Agrawal Drift (SAD):

• Injected subgroups of different sizes

• Subgroups defined in a procedural manner
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G R E E D Y  S U B G R O U P  D E F I N I T I O N
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G R E E D Y  S U B G R O U P  D E F I N I T I O N
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G R E E D Y  S U B G R O U P  D E F I N I T I O N
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H O W  D O  D E T E C T O R S  P E R F O R M ?

• We injected drift in subgroups of different sizes:

• from 1% -- very small subpopulations, 

• to 100% (i.e., the entire population is affected by drift).

• We evaluate the results in terms of FNR, FPR, F1 score, accuracy for various drift 

detectors
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F A L S E  P O S I T I V E  R A T E
• For all considered methods, the False 

Positive Rate is fairly constant, regardless 

of subgroup size, and low

• In other words, the methods rarely fire 

“positive” predictions when no drift is 

occurring
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F A L S E  N E G AT I V E  R AT E
• By contrast (and, as expected), the FNR 

is heavily affected by the subgroup size.

• When a smaller subgroup drifts, all 

methods struggle to detect drift

• Even though, remember, the entire 

subgroup is drifting!

• For subgroups larger than ~10% of the 

population, all methods get better
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W E ’ R E  W O R K I N G  O N  I T !

• We have addressed this problem in a recent work

• With very promising preliminary results :)

• Pre-print available at https://bit.ly/DriftInspector 
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C O N C L U S I O N S
• We argue that drift detectors should be able to detect localized drifts

• We introduce Subgroup Agrawal Drift, a synthetic benchmark with local drift injections

• We show that various drift detectors struggle to detect drifts

• We hope for this to spark some interest in future efforts :)

• (We are already onto that!) 
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A G R A W A L  D AT A S E T
• We base the benchmark on the Agrawal stream generator [1] 

• Each generated sample is a point (person) characterized by various features:

• Salary

• Commission

• Age

• Education level

• Car maker

• Zip code of the town

• Value of the house

• Years house owned

• Total loan amount

[1] Rakesh Agrawal, Tomasz Imielinksi, and Arun Swami. “Database Mining: A Performance Perspective”, IEEE Transactions on Knowledge and Data Engineering, 5(6), De cember 1993.
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D R I F T I N G  A G R A W A L

• Each point is assigned a binary label (whether a loan should be approved)

• 10 classification functions fi : X → {0,1} exist to assign each point to its ground truth

• e.g., f8(x) = (0.67 x (salary + commission) - 5000 x elevel - 20K) > 0

• Various works introduce concept drift by gradually shifting from fi to fj  (i ≠ j)

• E.g., p(f = fi) = 1/(1 + exp(-4(t-p)/w)

• Uses a sigmoid to parametrize when the drift occurs (p) and how long the 
transitory is (w)
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E X A M P L E S  O F  S U B G R O U P S

• So, we can generate subgroup of 

(approximately) any target size, and 

have that subgroup drift!

• Time to test some techniques!

Some examples of generated subgroups. Note that 
SG sizes may (slightly) differ from the requested one
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F 1 ,  A C C U R A C Y
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